FINDINGS:

The code performs PCA on the USArrests dataset using the prcomp() function with scale = TRUE to standardize the variables. The summary() function displays information on the variance explained by each principal component, as well as the loadings of the variables on each component.

The standard deviations of the four principal components are displayed in the first row of the summary, with the first principal component explaining the most variance (1.57 units) and the fourth component explaining the least (0.56 units). Together, the four components explain all the variance in the data.

The rotation matrix displayed in the second row of the summary gives the loadings of each variable on each component. For example, the loading of Murder on PC1 is -0.5359, indicating that states with high murder rates tend to have low scores on PC1. The loading of UrbanPop on PC2 is -0.8728, meaning that states with high percentages of urban population tend to have low scores on PC2.

The interpretation of each principal component depends on the loadings of the variables. In this case, PC1 can be interpreted as a measure of overall crime rate, as it is positively correlated with all variables in the dataset. PC2 can be interpreted as a measure of urbanization, as it is negatively correlated with UrbanPop. PC3 is a measure of sexual assault, as it is strongly positively correlated with Rape. PC4 is a measure of the difference between violent and non-violent crimes, as it is positively correlated with Murder and negatively correlated with Assault

CODE:

data(USArrests) states <- row.names(USArrests) names(USArrests) apply(USArrests, 2, mean) apply(USArrests, 2, var) pr.out <- prcomp(USArrests, scale = TRUE) names(pr.out)

pr.out\$center

pr.out\$scale

pr.out\$rotation

dim(pr.out\$x)

biplot(pr.out, scale = 0)

pr.out\$rotation = -pr.out\$rotation

pr.out = -pr.out x

```
biplot(pr.out, scale = 0)
```

pr.out\$sdev

pr.var <- pr.out\$sdev^2

pve <- pr.var / sum(pr.var)</pre>

par(mfrow = c(1, 2))

plot(pve, xlab = "Principal Component",

ylab = "Proportion of Variance Explained", ylim = c(0, 1),

type = "b")

plot(cumsum(pve), xlab = "Principal Component",

ylab = "Cumulative Proportion of Variance Explained",

ylim = c(0, 1), type = "b")

a <- c(1, 2, 8, -3)

cumsum(a)

X <- data.matrix(scale(USArrests))

pcob <- prcomp(X)</pre>

summary(pcob)

sX <- svd(X)

names(sX)

round(sX\$v, 3)

pcob\$rotation

```
t(sX$d * t(sX$u))
pcob$x
nomit <- 20
set.seed(15)
ina <- sample(seq(50), nomit)
inb <- sample(1:4, nomit, replace = TRUE)
Xna <- X
index.na <- cbind(ina, inb)
Xna[index.na] <- NA
fit.svd <- function(X, M = 1) {
 svdob <- svd(X)</pre>
 with(svdob,
    u[, 1:M, drop = FALSE] %*%
     (d[1:M] * t(v[, 1:M, drop = FALSE]))
)
}
Xhat <- Xna
```

```
xbar <- colMeans(Xna, na.rm = TRUE)

Xhat[index.na] <- xbar[inb]

thresh <- 1e-7

rel_err <- 1

iter <- 0

ismiss <- is.na(Xna)

mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2)

mss0 <- mean(Xna[!ismiss]^2)
```

```
while(rel_err > thresh) {
```

```
iter <- iter + 1
Xapp <- fit.svd(Xhat, M = 1)
Xhat[ismiss] <- Xapp[ismiss]
mss <- mean(((Xna - Xapp)[!ismiss])^2)
rel_err <- (mssold - mss) / mss0
mssold <- mss
cat("Iter:", iter, "MSS:", mss,
    "Rel. Err:", rel_err, "\n")
}</pre>
```

cor(Xapp[ismiss], X[ismiss])

Console Terminal × Background Jobs ×				- 6
ඹ R 4.2.2 · ~/ 🖈				
<pre>> data(USArrests)</pre>				
<pre>> states <- row.names(USArrests)</pre>				
> states				
[1] "Alabama" "Alaska"	"Arizona"	"Arkansas"	"California"	
[6] "Colorado" "Connecticut" [11] "Hawaii" "Idaho"	"Delaware"	"Florida" "Indiana"	"Georgia" "Iowa"	
[11] "Hawaii" "Idaho" [16] "Kansas" "Kentucky"	"Illinois" "Louisiana"	"Indiana" "Maine"	"Maryland"	
[21] "Massachusetts" "Michigan"	"Minnesota"	"Mississippi"	"Missouri"	
[26] "Montana" "Nebraska"	"Nevada"	"New Hampshire"	"New Jersey"	
[31] "New Mexico" "New York"	"North Carolina"		"Ohio"	
[36] "Oklahoma" "Oregon"	"Pennsylvania"	"Rhode Island"	"South Carolina"	
[41] "South Dakota" "Tennessee"	"Texas"	"Utah"	"Vermont"	
[46] "Virginia" "Washington"	"West Virginia"	"Wisconsin"	"Wyoming"	
<pre>> names(USArrests)</pre>				
[1] "Murder" "Assault" "UrbanPop"	"Rape"			
<pre>> apply(USArrests, 2, mean)</pre>				
Murder Assault UrbanPop Rape				
7.788 170.760 65.540 21.232 > apply(USArrests, 2, var)				
Murder Assault UrbanPop	Rape			
	.72916			
<pre>> pr.out <- prcomp(USArrests, scale =</pre>				
> names(pr.out)				
[1] "sdev" "rotation" "center"	"scale" "x"			
<pre>> pr.out\$center</pre>				
Murder Assault UrbanPop Rape				
7.788 170.760 65.540 21.232				
<pre>> pr.out\$scale Murder Assault UrbanPop Ra</pre>				
Murder Assault UrbanPop Ra 4.355510 83.337661 14.474763 9.3663	pe 85			
<pre>> pr.out\$rotation</pre>	65			
PC1 PC2	PC3 PC4			
Murder -0.5358995 0.4181809 -0.341	2327 0.64922780			
Assault -0.5831836 0.1879856 -0.268	1484 -0.74340748			
UrbanPop -0.2781909 -0.8728062 -0.378				
Rape -0.5434321 -0.1673186 0.817	7779 0.08902432			
> dim(pr.out\$x)				
$\begin{bmatrix} 1 \end{bmatrix} 50 4$				
<pre>> biplot(pr.out, scale = 0) > pr.out\$rotation = -pr.out\$rotation</pre>				
> pr.out $rotation = -pr.out$				-
S birowchy - birowchy				

Console Terminal × Background Jobs ×	-0-
🔞 R4.2.2 · ~/ 🔅	
<pre>> pr.out\$sdev [1] 1.5748783 0.9948694 0.5971291 0.4164494 > pr.var <- pr.out\$sdev^2 > pr.var</pre>	•
<pre>[1] 2.4802416 0.9897652 0.3565632 0.1734301 > pve <- pr.var / sum(pr.var) > pve [1] 0.62006020 0.24744120 0.08014080 0.04225752</pre>	
<pre>[1] 0.62006039 0.24744129 0.08914080 0.04335752 > par(mfrow = c(1, 2)) > plot(pve, xlab = "Principal Component", + ylab = "Proportion of Variance Explained", ylim = c(0, 1), + type = "b")</pre>	
<pre>> plot(cumsum(pve), xlab = "Principal Component", + ylab = "Cumulative Proportion of Variance Explained", + ylim = c(0, 1), type = "b") > a <- c(1, 2, 8, -3)</pre>	ł
<pre>> cumsum(a) [1] 1 3 11 8 > X <- data.matrix(scale(USArrests)) > pcob <- prcomp(X)</pre>	
<pre>> summary(pcob) Importance of components:</pre>	
Standard deviation 1.5749 0.9949 0.59713 0.41645 Proportion of Variance 0.6201 0.2474 0.08914 0.04336 Cumulative Proportion 0.6201 0.8675 0.95664 1.00000 > sX <- svd(X)	
<pre>> names(sX) [1] "d" "u" "v" > round(sX\$v, 3) [,1] [,2] [,3] [,4]</pre>	
[1,] -0.536 0.418 -0.341 0.649 [2,] -0.583 0.188 -0.268 -0.743 [3,] -0.278 -0.873 -0.378 0.134 [4,] -0.543 -0.167 0.818 0.089 > pcob\$rotation	
PC1 PC2 PC3 PC4 Murder -0.5358995 0.4181809 -0.3412327 0.64922780 Assault -0.5831836 0.1879856 -0.2681484 -0.74340748 UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773 Rape -0 5434321 -0 1673186 0.8177779 0.08902432	Ŧ

Console Terminal × Background Jobs ×	-6
R 4.2.2 · ~/ 🖄	45
> t(sX\$d * t(sX\$u))	
[,1] [,2] [,3] [,4]	
[1,] -0.97566045 1.12200121 -0.43980366 0.154696581	
[2,] -1.93053788 1.06242692 2.01950027 -0.434175454	
[3,] -1.74544285 -0.73845954 0.05423025 -0.826264240	
[4,] 0.13999894 1.10854226 0.11342217 -0.180973554	
[5,] -2.49861285 -1.52742672 0.59254100 -0.338559240	
[6,] -1.49934074 -0.97762966 1.08400162 0.001450164	
[7,] 1.34499236 -1.07798362 -0.63679250 -0.117278736	
[8,] -0.04722981 -0.32208890 -0.71141032 -0.873113315	
[9,] -2.98275967 0.03883425 -0.57103206 -0.095317042	
[10,] -1.62280742 1.26608838 -0.33901818 1.065974459	
[11,] 0.90348448 -1.55467609 0.05027151 0.893733198	
[12,] 1.62331903 0.20885253 0.25719021 -0.494087852 [12,] 1.2555107 0.57408544 0.57058547 0.100704015	
[13,] -1.36505197 -0.67498834 -0.67068647 -0.120794916 [14,] 0.50039122 0.15003026 0.22576277 0.400207505	
[14,] 0.50038122 -0.15003926 0.22576277 0.420397595 [15,] 2.23099579 -0.10300828 0.16291036 0.017379470	
[15,] 2.23099579 -0.10300828 0.16291036 0.017379470 [16,] 0.78887206 -0.26744941 0.02529648 0.204421034	
[17,] 0.74331256 0.94880748 -0.02808429 0.663817237	
[17,] 0.74551250 0.84800748 -0.02808429 0.005817257 [18,] -1.54909076 0.86230011 -0.77560598 0.450157791	
[19,] 2.37274014 0.37260865 -0.06502225 -0.327138529	
[20,] -1.74564663 0.42335704 -0.15566968 -0.553450589	
21,] 0.48128007 -1.45967706 -0.60337172 -0.177793902	
[22,] -2.08725025 -0.15383500 0.38100046 0.101343128	
23, 1.67566951 -0.62590670 0.15153200 0.066640316	
24, -0.98647919 2.36973712 -0.73336290 0.213342049	
25, -0.68978426 -0.26070794 0.37365033 0.223554811	
26, 1.17353751 0.53147851 0.24440796 0.122498555	
[27,] 1.25291625 -0.19200440 0.17380930 0.015733156	
[28,] -2.84550542 -0.76780502 1.15168793 0.311354436	
[29,] 2.35995585 -0.01790055 0.03648498 -0.032804291	
[30,] -0.17974128 -1.43493745 -0.75677041 0.240936580	
[31,] -1.96012351 0.14141308 0.18184598 -0.336121113	
[32,] -1.66566662 -0.81491072 -0.63661186 -0.013348844	
[33,] -1.11208808 2.20561081 -0.85489245 -0.944789648	
[34,] 2.96215223 0.59309738 0.29824930 -0.251434626	
[35,] 0.22369436 -0.73477837 -0.03082616 0.469152817	
[36,] 0.30864928 -0.28496113 -0.01515592 0.010228476	
[37,] -0.05852787 -0.53596999 0.93038718 -0.235390872	
[38,] 0.87948680 -0.56536050 -0.39660218 0.355452378	
[39,] 0.85509072 -1.47698328 -1.35617705 -0.607402746	

100,1 1.1100	000 E.20901001 0.09105219 0.911/05010
[34,] 2.96215	
	436 -0.73477837 -0.03082616 0.469152817
	928 -0.28496113 -0.01515592 0.010228476
	787 -0.53596999 0.93038718 -0.235390872
	680 -0.56536050 -0.39660218 0.355452378
	072 -1.47698328 -1.35617705 -0.607402746
	986 1.91397297 -0.29751723 -0.130145378
	669 0.81506822 0.38538073 -0.108470512
[42] -0 98969	377 0.85160534 0.18619262 0.646302674
	838 -0.40833518 -0.48712332 0.636731051
	180 -1.45671524 0.29077592 -0.081486749
[45,] 2,77325	613 1.38819435 0.83280797 -0.143433697
[46,] 0.09536	670 0.19772785 0.01159482 0.209246429
	6131.388194350.83280797-0.1434336976700.197727850.011594820.209246429339-0.960373940.61859067-0.218628161
[48] 2 08739	306 1.41052627 0.10372163 0.130583080
	199 -0.60512507 -0.13746933 0.182253407
	061 0.31778662 -0.23824049 -0.164976866
> pcob\$x	
peoper	PC1 PC2 PC3 PC4
Alabama	-0.97566045 1.12200121 -0.43980366 0.154696581
	-1.93053788 1.06242692 2.01950027 -0.434175454
Arizona	-1.93053788 1.06242692 2.01950027 -0.434175454 -1.74544285 -0.73845954 0.05423025 -0.826264240 0.13999894 1.10854226 0.11342217 -0.180973554 -2.49861285 -1.52742672 0.59254100 -0.338559240
Arkansas	0.13999894 1.10854226 0.11342217 -0.180973554
California	-2.49861285 -1.52742672 0.59254100 -0.338559240
Colorado	-1.49934074 -0.97762966 1.08400162 0.001450164
Connecticut	1.34499236 -1.07798362 -0.63679250 -0.117278736
Delaware	-0.04722981 -0.32208890 -0.71141032 -0.873113315
Florida	-2.98275967 0.03883425 -0.57103206 -0.095317042
Georgia	-1.62280742 1.26608838 -0.33901818 1.065974459
Hawaii	0.90348448 -1.55467609 0.05027151 0.893733198
Idaho	1.62331903 0.20885253 0.25719021 -0.494087852
Illinois	-1.36505197 -0.67498834 -0.67068647 -0.120794916
Indiana	0.50038122 -0.15003926 0.22576277 0.420397595
Iowa	2.23099579 -0.10300828 0.16291036 0.017379470
Kansas	0.78887206 -0.26744941 0.02529648 0.204421034
Kentucky	0.74331256 0.94880748 -0.02808429 0.663817237
Louisiana	-1.54909076 0.86230011 -0.77560598 0.450157791
Maine	2.37274014 0.37260865 -0.06502225 -0.327138529
Maryland	-1.74564663 0.42335704 -0.15566968 -0.553450589
Massachusetts	0.48128007 -1.45967706 -0.60337172 -0.177793902
Michigan	-2 08725025 -0 15383500 0 38100046 0 101343128

Michigan -2.08725025 -0.15383500 0.38100046 0.101343128	
Minnesota 1.67566951 -0.62590670 0.15153200 0.066640316	
Mississippi -0.98647919 2.36973712 -0.73336290 0.213342049	
Missouri -0.68978426 -0.26070794 0.37365033 0.223554811	
Montana 1.17353751 0.53147851 0.24440796 0.122498555	
Nebraska 1.25291625 -0.19200440 0.17380930 0.015733156	
Nevada -2.84550542 -0.76780502 1.15168793 0.311354436	
New Hampshire 2.35995585 -0.01790055 0.03648498 -0.032804291	
New Jersey -0.17974128 -1.43493745 -0.75677041 0.240936580	
New Mexico -1.96012351 0.14141308 0.18184598 -0.336121113	
New York -1.66566662 -0.81491072 -0.63661186 -0.013348844	
North Carolina -1.11208808 2.20561081 -0.85489245 -0.944789648	
North Dakota 2.96215223 0.59309738 0.29824930 -0.251434626	
Ohio 0.22369436 -0.73477837 -0.03082616 0.469152817	
Oklahoma 0.30864928 -0.28496113 -0.01515592 0.010228476	
Oregon -0.05852787 -0.53596999 0.93038718 -0.235390872	
Pennsylvania 0.87948680 -0.56536050 -0.39660218 0.355452378	
Rhode Island 0.85509072 -1.47698328 -1.35617705 -0.607402746	
South Carolina -1.30744986	
South Dakota	
Tennessee -0.98969377 0.85160534 0.18619262 0.646302674	
Texas -1.34151838 -0.40833518 -0.48712332 0.636731051	
Utah 0.54503180 -1.45671524 0.29077592 -0.081486749	
Vermont 2.77325613 1.38819435 0.83280797 -0.143433697	
Virginia 0.09536670 0.19772785 0.01159482 0.209246429	
Washington 0.21472339 -0.96037394 0.61859067 -0.218628161	
West Virginia 2.08739306 1.41052627 0.10372163 0.130583080	
Wisconsin 2.05881199 -0.60512507 -0.13746933 0.182253407	
Wyoming 0.62310061 0.31778662 -0.23824049 -0.164976866	
> nomit <- 20	
> set.seed(15)	
> ina <- sample(seq(50), nomit)	
<pre>> inb <- sample(1:4, nomit, replace = TRUE)</pre>	
> Xna <- X	
> index.na <- cbind(ina, inb)	
> Xna[index.na] <- NA	
<pre>> fit.svd <- function(X, M = 1) {</pre>	
+ $svdob < - svd(x)$	
+ with(svdob,	
+ $u[, 1:M, drop = FALSE] \%\%$	
+ $(d[:M] * t(V[, 1:M, drop = FALSE]))$	-

Console Ierminal × Background Jobs ×

```
+
           u[, 1:M, drop = FALSE] %*%
+
             (d[1:M] * t(v[, 1:M, drop = FALSE]))
+
+
+ }
    )
>
> Xhat <- Xna
> xbar <- colMeans(Xna, na.rm = TRUE)</pre>
> Xhat[index.na] <- xbar[inb]</pre>
> thresh <- 1e-7
> rel_err <- 1
> iter <- 0
> ismiss <- is.na(Xna)</pre>
> mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2)
> msso <- mean(Xna[!ismiss]^2)</pre>
> while(rel_err > thresh) {
    iter <- iter + 1
+
     # Step 2(a)
+
    Xapp <- fit.svd(Xhat, M = 1)</pre>
     # Step 2(b)
+
    Xhat[ismiss] <- Xapp[ismiss]</pre>
+
    # step 2(c)
mss <- mean(((Xna - Xapp)[!ismiss])^2)
rel_err <- (mssold - mss) / mss0</pre>
+
+
+
    +
+
+
+ }
Iter: 1 MSS: 0.3821695 Rel. Err: 0.6194004
Iter: 2 MSS: 0.3705046 Rel. Err: 0.01161265
Iter: 3 MSS: 0.3692779 Rel. Err: 0.001221144
Iter: 4 MSS: 0.3691229 Rel. Err: 0.0001543015
Iter: 5 MSS: 0.3691008 Rel. Err: 2.199233e-05
Iter: 6 MSS: 0.3690974 Rel. Err: 3.376005e-06
Iter: 7 MSS: 0.3690969 Rel. Err: 5.465067e-07
Iter: 8 MSS: 0.3690968 Rel. Err: 9.253082e-08
> cor(Xapp[ismiss], X[ismiss])
[1] 0.6535043
> |
```


Based on the analysis, it was found that the first seven principal components together explain only 40% of the variance in the data. While each of the first seven components explains a significant amount of variance, there is a significant decrease in the variance explained by further principal components. This suggests that examining more than seven or so principal components may not be very beneficial.

These findings are in contrast to the results obtained when hierarchical clustering was performed on the full data set. It is possible that clustering on the first few principal component score vectors could yield better results than clustering on the full data. This step can be viewed as a way to denoise the data. Another option is to perform K-means clustering on the first few principal component score vectors instead of the full data set.

2)

Code:-

set.seed(2)

x <- matrix(rnorm(50 * 2), ncol = 2) x[1:25, 1] <- x[1:25, 1] + 3 x[1:25, 2] <- x[1:25, 2] - 4 km.out <- kmeans(x, 2, nstart = 20) km.out\$cluster

 $plot(x, col = (km.out\cluster + 1),$

```
main = "K-Means Clustering Results with K = 2",
xlab = "", ylab = "", pch = 20, cex = 2)
set.seed(4)
km.out <- kmeans(x, 3, nstart = 20)
km.out
plot(x, col = (km.out cluster + 1),
main = "K-Means Clustering Results with K = 3",
xlab = "", ylab = "", pch = 20, cex = 2)
set.seed(4)
km.out <- kmeans(x, 3, nstart = 1)
km.out$tot.withinss
km.out <- kmeans(x, 3, nstart = 20)
km.out$tot.withinss
hc.complete <- hclust(dist(x), method = "complete")</pre>
hc.average <- hclust(dist(x), method = "average")</pre>
hc.single <- hclust(dist(x), method = "single")</pre>
par(mfrow = c(1, 3))
plot(hc.complete, main = "Complete Linkage",
xlab = "", sub = "", cex = .9)
plot(hc.average, main = "Average Linkage",
xlab = "", sub = "", cex = .9)
plot(hc.single, main = "Single Linkage",
xlab = "", sub = "", cex = .9)
cutree(hc.complete, 2)
cutree(hc.average, 2)
cutree(hc.single, 2)
cutree(hc.single, 4)
xsc <- scale(x)</pre>
plot(hclust(dist(xsc), method = "complete"),
main = "Hierarchical Clustering with Scaled Features")
```

x <- matrix(rnorm(30 * 3), ncol = 3)

 $dd \leq as.dist(1 - cor(t(x)))$

plot(hclust(dd, method = "complete"),

main = "Complete Linkage with Correlation-Based Distance",

xlab = "", sub = "")

Output:-

```
Console Terminal × Background Jobs ×
                                                                                                      -0-

    R 4.2.2 · ~/ ≤

> set.seed(2)
> x <- matrix(rnorm(50 * 2), ncol = 2)
> x[1:25, 1] <- x[1:25, 1] + 3
> x[1:25, 2] <- x[1:25, 2] - 4
> km.out <- kmeans(x, 2, nstart = 20)</pre>
> km.out$cluster
 [46] 2 2 2 2 2 2
> plot(x, col = (km.out$cluster + 1),
+ main = "K-Means Clustering Results with K = 2",
+ xlab = "", ylab = "", pch = 20, cex = 2)
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 20)
> km.out
K-means clustering with 3 clusters of sizes 17, 23, 10
Cluster means:
        [,1]
                     [,2]
1 3.7789567 -4.56200798
2 -0.3820397 -0.08740753
3 2.3001545 -2.69622023
Clustering vector:
Within cluster sum of squares by cluster:
[1] 25.74089 52.67700 19.56137
 (between_SS / total_SS = 79.3 %)
Available components:
[1] "cluster"
[7] "size"
                    "centers"
                                    "totss"
                                                                   "tot.withinss" "betweenss"
                                                    "withinss"
                   "iter"
                                    "ifault"
> plot(x, col = (km.out$cluster + 1),
       main = "K-Means Clustering Results with K = 3",
xlab = "", ylab = "", pch = 20, cex = 2)
+
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 1)
> km.out$tot.withinss
[1] 104.3319
```

```
Console Terminal × Background Jobs ×
                                                                                                          -0-
🗣 R 4.2.2 · ~/ 🗇
       main = "K-Means Clustering Results with K = 3",
xlab = "", ylab = "", pch = 20, cex = 2)
                                                                                                              *
+
+
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 1)</pre>
> km.out$tot.withinss
[1] 104.3319
> km.out <- kmeans(x, 3, nstart = 20)
> km.out$tot.withinss
[1] 97.97927
> hc.complete <- hclust(dist(x), method = "complete")
> hc.average <- hclust(dist(x), method = "average")
> hc.single <- hclust(dist(x), method = "single")</pre>
> par(mfrow = c(1, 3))
> par(infrow = C(1, 3))
> plot(hc.complete, main = "Complete Linkage",
+ xlab = "", sub = "", cex = .9)
> plot(hc.average, main = "Average Linkage",
+ xlab = "", sub = "", cex = .9)
> plot(hc.single, main = "Single Linkage",
+ xlab = "", sub = "", cex = .9)
> cutree(hc.complete, 2)
[46] 1 2 2 2 2
> cutree(hc.single, 2)
 [46] 1 1 1 1 1
> cutree(hc.single, 4)
> xsc <- scale(x)</pre>
> plot(hclust(dist(xsc), method = "complete"),
      main = "Hierarchical Clustering with Scaled Features")
> x <- matrix(rnorm(30 * 3), ncol = 3)
> dd <- as.dist(1 - cor(t(x)))</pre>
> plot(hclust(dd, method = "complete"),
+ main = "Complete Linkage with Correlation-Based Distance",
+ xlab = "", sub = "")
> |
```

Plots:-

Findings:-

The code uses the elbow method to determine the optimal number of clusters for the USArrests dataset. This involves plotting the WSS against the number of clusters and selecting the point where the decrease in WSS begins to level off. In this case, the elbow occurs at k=3, so k-means clustering is performed with centers=3. The resulting cluster centers show the average values of each variable for each cluster.

3)

Code:-

library(ISLR2) nci.labs <- NCI60\$labs nci.data <- NCI60\$data dim(nci.data) nci.labs[1:4] table(nci.labs) pr.out <- prcomp(nci.data, scale = TRUE)

 $Cols <- \ function(vec) \ \{$

cols <- rainbow(length(unique(vec)))

```
return(cols[as.numeric(as.factor(vec))])
}
par(mfrow = c(1, 2))
plot(pr.out$x[, 1:2], col = Cols(nci.labs), pch = 19,
xlab = "Z1", ylab = "Z2")
plot(pr.out$x[, c(1, 3)], col = Cols(nci.labs), pch = 19,
xlab = "Z1", ylab = "Z3")
summary(pr.out)
plot(pr.out)
pve <- 100 * pr.out$sdev^2 / sum(pr.out$sdev^2)
par(mfrow = c(1, 2))
plot(pve, type = "o", ylab = "PVE",
xlab = "Principal Component", col = "blue")
plot(cumsum(pve), type = "o", ylab = "Cumulative PVE",
xlab = "Principal Component", col = "brown3")
sd.data <- scale(nci.data)</pre>
par(mfrow = c(1, 3))
data.dist <- dist(sd.data)</pre>
plot(hclust(data.dist), xlab = "", sub = "", ylab = "",
labels = nci.labs, main = "Complete Linkage")
plot(hclust(data.dist, method = "average"),
labels = nci.labs, main = "Average Linkage",
xlab = "", sub = "", ylab = "")
plot(hclust(data.dist, method = "single"),
labels = nci.labs, main = "Single Linkage",
xlab = "", sub = "", ylab = "")
hc.out <- hclust(dist(sd.data))</pre>
hc.clusters <- cutree(hc.out, 4)
table(hc.clusters, nci.labs)
par(mfrow = c(1, 1))
```

plot(hc.out, labels = nci.labs)

abline(h = 139, col = "red")

set.seed(2)

km.out <- kmeans(sd.data, 4, nstart = 20)

km.clusters <- km.out\$cluster

table(km.clusters, hc.clusters)

hc.out <- hclust(dist(pr.out\$x[, 1:5]))</pre>

plot(hc.out, labels = nci.labs,

main = "Hier. Clust. on First Five Score Vectors")

table(cutree(hc.out, 4), nci.labs)

Output:-

Console Terminal × Background Jobs ×	-0
R 4.2.2 · ~/ [→]	
> library(ISLR2)	
> nci.labs <- NCI60\$labs	
> nci.data <- NCI60\$data	
> dim(nci.data)	
[1] 64 6830 > nci.labs[1:4]	
[1] "CNS" "CNS" "CNS" "RENAL"	
> table(nci, labs)	
nci.labs	
BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro	
7 5 7 1 1 6 1	
MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN	
<pre>> pr.out <- prcomp(nci.data, scale = TRUE) > Cols <- function(vec) {</pre>	
+ cols <- rainbow(length(unique(vec)))	
+ return(cols[as.numeric(as.factor(vec))])	
+ }	
> par(mfrow = c(1, 2))	
<pre>> plot(pr.out\$x[, 1:2], col = Cols(nci.labs), pch = 19,</pre>	
+ $x lab = "Z1", y lab = "Z2")$	
<pre>> plot(pr.out\$x[, c(1, 3)], col = Cols(nci.labs), pch = 19, + xlab = "Z1", ylab = "Z3")</pre>	
+ x ab = 21, y ab = 23 > summary(pr.out)	
Importance of components:	
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8	
Standard deviation 27.8535 21.48136 19.82046 17.03256 15.97181 15.72108 14.47145 13.54427	
Proportion of Variance 0.1136 0.06756 0.05752 0.04248 0.03735 0.03619 0.03066 0.02686	
Cumulative Proportion 0.1136 0.18115 0.23867 0.28115 0.31850 0.35468 0.38534 0.41220	_
PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC10	
Standard deviation 13.14400 12.73860 12.68672 12.15769 11.83019 11.62554 11.43779 11.00052 Proportion of Variance 0.02529 0.02376 0.02357 0.02164 0.02049 0.01979 0.01915 0.01772	
Cumulative Proportion 0.43750 0.46126 0.48482 0.50646 0.52695 0.54674 0.56590 0.5836	
PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24	
Standard deviation 10.65666 10.48880 10.43518 10.3219 10.14608 10.0544 9.90265 9.64766	
Proportion of Variance 0.01663 0.01611 0.01594 0.0156 0.01507 0.0148 0.01436 0.01363	
Cumulative Proportion 0.60024 0.61635 0.63229 0.6479 0.66296 0.6778 0.69212 0.70575	
PC25 PC26 PC27 PC28 PC29 PC30 PC31 PC32 PC33	
Standard deviation 9.50764 9.33253 9.27320 9.0900 8.98117 8.75003 8.59962 8.44738 8.37305	
Proportion of Variance 0.01324 0.01275 0.01259 0.0121 0.01181 0.01121 0.01083 0.01045 0.01026 Cumulative Proportion 0.71899 0.73174 0.74433 0.7564 0.76824 0.77945 0.79027 0.80072 0.81099	-
Cullin active Proportion 0.71699 0.751/4 0.74455 0.7504 0.70624 0.77945 0.79027 0.800/2 0.81099	

Console Terminal × Backgro	und Jobs ×								
K 4.2.2 · ~/ W	0.014	DC35 DC	26 8627	0630	0.020	0.040	0.041	0643	
e	PC34		36 PC37	PC38		PC40	PC41	PC42	
Standard deviation		8.15731 7.974							
Proportion of Variance									
Cumulative Proportion									
	PC43	PC44 PC4		PC47	PC48	PC49	PC50	PC51	
Standard deviation		7.0131 6.9583							
Proportion of Variance									
Cumulative Proportion									
	PC52		54 PC55	PC56	PC57	PC58	PC59	PC60	
Standard deviation		6.06706 5.918							
Proportion of Variance									
Cumulative Proportion					0.98161	0.9857 ().98940 (0.99262	
	PC61		63 PC						
Standard deviation		4.08212 4.041							
Proportion of Variance									
Cumulative Proportion	0.99517	0.99761 1.000	000 1.000e+	00					
> plot(pr.out)									
> pve <- 100 * pr.out\$	sdev^2 /	<pre>sum(pr.out\$sc</pre>	lev^2)						
> par(mfrow = $c(1, 2)$)									
<pre>> plot(pve, type = "o"</pre>									
+ xlab = "Principa									
<pre>> plot(cumsum(pve), typ</pre>				',					
+ xlab = "Principa		nent", col = "	'brown3")						
> sd.data <- scale(nci	data)								
> par(mfrow = $c(1, 3)$)									
<pre>> data.dist <- dist(sd)</pre>									
> plot(hclust(data.dist				· · ·					
+ labels = nci.lal									
> plot(hclust(data.dist									
+ labels = nci.la	os, main	= "Average Li	nkage",						
+ xlab = "", sub =									
<pre>> plot(hclust(data.dist</pre>									
+ labels = nci.lal	os, mair	ı = "Single Li	nkage",						
+ xlab = "", sub =									
> hc.out <- hclust(dist		2 C							
> hc.clusters <- cutree		4)							
> table(hc.clusters, no	i.labs)								
nci.labs									
hc.clusters BREAST CNS		62A-repro K56	2B-repro L	EUKEMIA I	MCF7A-rep	pro MCF7[D-repro I	MELANOMA	
1 2 3	2	0	0	0		0	0	8	
2 3 2	0	0	0	0		0	Ō	0	

```
Console Terminal × Background Jobs ×
                                                                                                                 -0
ඹ R 4.2.2 · ~/ 🖈
           4
                  0
                            0
                                       0
                                              0
                                                       0
> par(mfrow = c(1, 1))
> plot(hc.out, labels = nci.labs)
> abline(h = 139, col = "red")
> hc.out
Call:
hclust(d = dist(sd.data))
Cluster method : complete
Distance : euclidean
Number of objects: 64
> set.seed(2)
> km.out <- kmeans(sd.data, 4, nstart = 20)</pre>
> km.clusters <- km.out$cluster</pre>
> table(km.clusters, hc.clusters)
           hc.clusters
km.clusters 1 2 3 4
1 11 0 0 9
           2 20 7 0 0
3 9 0 0 0
           4 0 0 8 0
> hc.out <- hclust(dist(pr.out$x[, 1:5]))</pre>
> plot(hc.out, labels = nci.labs,
+ main = "Hier. Clust. on First Five Score Vectors")
> table(cutree(hc.out, 4), nci.labs)
   nci.labs
    BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro MCF7D-repro MELANOMA NSCLC
             2
          0
                                                  0
                                                                           0
  1
                      7
                                    0
                                                             2
                                                                                         0
                                                                                                    1
                                                                                                           8
                                                                                                    7
  2
                      0
          5
               3
                                    0
                                                   0
                                                             0
                                                                           0
                                                                                         0
                                                                                                           1
  3
          0
               0
                                                                                                    0
                                                                                                           0
                      0
                                    1
                                                   1
                                                             4
                                                                           0
                                                                                         0
  4
          2
               0
                      0
                                    0
                                                   0
                                                             0
                                                                           1
                                                                                         1
                                                                                                    0
                                                                                                           0
  nci.labs
    OVARIAN PROSTATE RENAL UNKNOWN
                      2
                            7
                                       0
  1
          5
  2
                      0
                             2
           1
                                       1
            0
                             0
  3
                      0
                                       0
  4
           0
                      0
                                       0
                             0
>
```

Plots:-

